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On a semiphenomenological Ievel, generalized Langevin equations are usually 
obtained by adding a random force (RF) term to macroscopic deterministic 
equations assumed to be known. Here this procedure is made rigorous by con- 
veniently redefining the RF, which is shown to be colored noise weakly 
correlated with the observables at earlier times due to the finite lifetime of 
microscopic events. Corresponding fluctuation-dissipation theorems are derived. 
Explicit expressions for the spectral density of the fluctuations are obtained in a 
particularly simple form, with the deviation of the line shape from the 
Lorentzian being related most explicitly to the spectral density of the RF. Well- 
known low-frequency expressions and the Einstein relation of (generalized) 
Brownian motion theory are modified so as to include lifetime effects. New sum 
rules are obtained relating dissipative quantities to contour integrals (in the 
complex frequency domain) over spectral densities or corresponding response 
functions. The Heisenberg dynamics of a complete set of macroobservables is 
shown to be equivalent to a generalized Orstein-Uhlenbeck stochastic process 
which is a non-Markovian process due to the lifetime effects. 

KEY WORDS:  Statistical mechanics; Langevin equations; Heisenberg 
dynamics; spectral density; line shape; colored noise; Ornstein-Uhlenbeck 
process. 

1. I N T R O D U C T I O N  

Generalized Langevin equations (GLE) have proven in recent years to 
provide a valuable conceptual basis for the mesoscopic description of a 
broad variety of irreversible processes, particularly in far-from-equilibrium 
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situations. ~ Originally, such an equation was given by Langevin for 
describing Brownian motion as 

~(t) = -~v ( t )  + x ( t )  (1.1) 

where v denotes the velocity of the Brownian particle of unit mass, ~ is the 
friction constant, and x is the random force (RF), assumed to be white 
noise. Equation (1.1) was obtained by adding the RF term to the 
systematic (or macroscopic) part b = - {v  in order to simulate the fluc- 
tuations of v around its systematic or frictional motion. 

This is a phenomenological procedure. Exact GLEs for an arbitrary 
set of observables A(t),  {A(t): Al ( t  ) ..... An(t)} have been derived by Mori (2) 
directly from statistical mechanics by means of his projection operator 
technique. These exact equations differ from Eq. (1.1) in that the noise is 
colored and the friction term is a retarded one. Mori's equations are of 
wide use and form one of the cornerstones of nonequilibrium statistical 
mechanics in the convolution picture (cf. Section 2). 

The convolutionless version of the GLE has been derived subsequently 
by Tokuyama and Mori and others. (3'4) These equations have the general 
structure of Eq. (1.1), i.e., the friction term is time-local, with ~ depending 
on time, however. They have found much less application than their con- 
volution counterpart due to their more complicated structure (see Sec- 
tion 3 for details). 

The present paper proposes a third type of GLE [cf. Eq. (4.2)], which 
is of the same structure as Eq. (1.1), i.e., with ~ a constant (autonomous 
friction term). Thus, all of the effects due to the finite duration of the 
microscopic events that are responsible for the fluctuations of A(t)  are 
relegated to the colored noise character of the RF (cf. Section 4.). This new 
ansatz has a number of important consequences. In particular, it leads to 
very simple expressions for the spectral density of A(t)  and gives explicit 
account of the modifications of the Lorentzian line shape due to the 
coloredness of the noise (Section 6) and of the modification of the Einstein 
relation of Brownian motion theory due to lifetime effects (Section 7). 
From the conceptual point of view, it seems interesting that at all levels of 
observation we may identify Heisenberg dynamics with a generalized 
Ornstein-Uhlenbeck process (Section 8.). 

The paper rests in several respects on results obtained in Ref. 4 
(referred to as I in the following). In order to make the present paper as 
self-contained as possible, we note the following results. The object of cen- 
tral interest in I was the correlation matrix C(t), which is given in Liouville 
space notation as 

C(t) = ( A ( t ) I A  + ) (1.2) 
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where A is a row matrix of n elements and A + its Hermit ian counterpart .  It 
is assumed that A forms a complete set, so that  it comprises all of the slow 
variables of the system. Then, the analytical cont inuat ion into the lower 
half-plane of the Laplace transform (~(z) of C(t) reveals two groups of 
singularities, macroscopic  and microscopic ones. These are situated a dis- 
tance of  order t R ~ or t~71, respectively, below the real axis, where tR (to) is a 
characteristic time of the slow (rapid) variables. This leads, by means of the 
theory of residua, to the decomposi t ion  (valid for t > 0) 

C(l) = C (+ )(t) + c(m)( t) (1.3) 

of C into a macroscopic  and a microscopic part. We note that c(m)(t) 
decays on a time scale given by to, 2 

c(m)(t)=O, t>>t,. (1.4) 

whereas C (+) decays with scale t R. 
The convolutionless equat ion of mot ion  for C(t) is 

where 

C(t) = - I ( t )  C(t) (1.5a) 

I( t )= - C ( t )  C l(t) 

On the other hand, C (+) obeys the au tonomous  equations 

8~ C ( + )(t) = - I  ( + )C ( + )(t) 

where 

(1.5b) 

(1.6) 

I ( + ) =  lim I(t) (1.7) 

with I (+) the t ransport  kernel of the au tonomous  macrodynamics  obeyed 
by the aged system. As a consequence of the above we obtain 3 

C(+)(t)=e ~' A (1.8) 

where 

C ( + I ( 0 ) = :  A = lim e~'C(t) (1.9) 
t ~ o O  

2 Equation (1.4) is a symbolic notation including, e.g., exponential but not algebraic decay, 
which has no time scale. 

3 We drop here and in the following the (+)  sign wherever possible, i.e., I = I I + I, A = A I+),._. 
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and we will frequently use 

where 

A = F + F  (1.10) 

F = ( A I A  +)  (1.11) 

is the variance matrix of the equilibrium fluctuations of A and 

r =  o(~),  ~ = tc/tR 

We will also need 

(1.~2) 

= i ~  (1.13) 

which plays the role of the Onsager kinetic coefficient in the irreversible 
thermodynamics to be developed in a subsequent paper. Note that Y 
deviates from its usual definition by terms of order ~ due to Eqs. (l.10) and 
(1.12). 

In concluding this section, we want to emphasize that the above 
results were not derived from first principles, from considering the spec- 
trum of the Liouvillean, say. Instead, all we have shown in I is that the 
above results are fully consistent with the convolution picture. The results 
to be derived in the present paper rest on the same footing, so that, e.g., the 
decay properties of the noise term [cf. Eq. (4.5)] are valid if and only if the 
property (2.6) holds. 

A second remak concerns the completeness of the set A. The decay of 
noise correlations over molecular times can hold only if A also contains all 
bilinear and higher combinations of some primitive slow variables as they 
are introduced in mode-mode coupling theory. 

Thus, we actually are dealing with a nonlinear GLE. Reducing A to 
the set of the linear variables only leads to the appearance of a long-time 
tail (algebraic decay) in RF correlation functions much in the same way as 
obtained in m o d ~ m o d e  coupling theory for the memory kernel M(t )  of the 
convolution picture. This will be treated in more detail in a separate paper. 

2. G E N E R A L I Z E D  L A N G E V I N  E Q U A T I O N  IN T H E  
C O N V O L U T I O N  P I C T U R E  

One of the main achievements of the customary convolution picture 
(CP) approach to nonequilibrium statistical mechanics consists in the 
derivation of a generalized Langevin equation (GLE), i.e., in rewriting the 
Heisenberg equations of motion 

Ak = iLAk,  k = 1,..., n (2.1) 
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for our set A = {A1 ..... A,,} of observables into the exact GLE 

flU) = - i ( 2 A ( t ) -  dr' Mir(t ') A ( t -  t ' )+f( t )  (2.2) 

where f ( t )  denotes the so-called random force (RF) given by 

f ( t )  = i[exp( + iQLQt)] QL/3A(O) (2.3) 

where the projection operators /3 and Q, with /3 + (~ = 1, were introduced 
in I. In Eq. (2.2) 

g2= (AI L I A + ) F  - '  (2.4) 

and 

Mzr(t) = ( f ( t + s ) [ f + ( s ) )  F 5, Vs (2.5) 

which is called the fluctuation-dissipation theorem of the second kind 
relating the random force to the generalized transport kernel M(t). 

Equation (2.2) is exactly valid for any system and choice of obser- 
vables, its physical meaning deriving from the decay properties of M(t), 
which in the symbolic notation introduced in Section 1 are given by 

M(t) = O, Itl >> t~. (2.6) 

provided the set A is a complete one, i.e., that it comprises all slow (with 
characteristic time tn) parameters of the system. 

In view of Eq. (2.5), the RF is seen to be stationary. This is obvious 
already, since f ( t )  obeys the equation of motion 

f ( t )  = +iQLOf(t  ) (2.7) 

for all times t. Thus, neither Eq. (2.1) nor Eq. (2.7) singles out any instant 
of time. The RF obeys 

(f(t))eq = 0 

and the orthogonality property 

(2.8a) 

( f ( t ) lA+(O))  =0,  Vt (2.8b) 

However, one easily convinces oneself that the orthogonality of 
Eq. (2.8b) is a nonstationary property in the sense that 

( f ( t l ) l A  + (t2)) = <p(t,, t2) v L 0 (2.8c) 
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in general. Thus, one may say the RF f ( t )  is exactly orthogonal to 
(uncorrelated with) the observables A only at a single instant of time 
chosen arbitrarily at t2 = 0. 

We note without proof that for tl, t2 > 0 (<0)  q) has, apart from terms 
of order 4, the same properties as Q(+) ( t l -  t2) ( Q ( ) )  as introduced in Sec- 
tion 4. In particular, f is strongly correlated with A for, say, t2 > t 1 >~ t0, 
where q~ ~ 2 I  e x p [ - ( t 2 - q ) I ] F  in the white noise limit. 

The orthogonality property (2.8b) usually is considered essential for 
the reinterpretation of f ( t )  as a random force (RF). The point of view 
taken in the present paper is different. We will argue below that certain 
correlations, such as expressed by Eq. (2.8c), between the observables and 
the RF are quite natural in realistic systems obeying the Heisenberg 
dynamics (2.1). Thus, there is no compelling physical reason for excluding 
such correlations at some particular instant of time, as in (2.8b). We will 
therefore drop this orthogonality requirement and thus obtain a theory 
that is time-local, completely stationary, and displays explicitly the 
existence of an autonomous macrodynamics that is hidden in the GLE 
(2.2). Before introducing this GLE, we will consider in the following sec- 
tion the GLE in the time-local picture as proposed earlier by several 
authors. 

3. GENERALIZED LANGEVIN EQUATIONS IN THE T I M E - L O C A L  
PICTURE (TLP) 

The TLP analog of the GEE (2.2) has been obtained earlier by several 
authors in the framework of the so-called convolutionless projection 
operator method, the result being given usually a s  (3) 

.,i(t) = - I ( t )  A( t )  + g(t) (3.!) 

where I(t) was introduced in Eq. (1.5), but was also given as an explicit 
expression [cf. Eqs. (2.3) (2.7) of Ref. 3] as 

I(t) = i(2 + ds tp(s) (3.2a) 

and 

O ( t ) = ( g ( t ) l g + ( O ) ) C  ~(t) (3.2b) 

The random force (RF) 

g(t) = i[L -- iI(t)] A(t)  (3.3) 



Generalized Langevin Equations 397 

may be written explicitly as 

g(t) = [exp(itQLO,)][1 - (~d(t)] -1 QA(0) (3.4) 

and 

d(t) = 1 - exp( - itL) exp(itQLQ) 

so that the explicit expressions of this TLP equation are much more dif- 
ficult than the corresponding CP ones, which is probably why these 
equations have found only few applications so far. 

The RF g(t) obeys the orthogonality condition 

~g(t)rA+(O)) =0,  Vt~>0 (3.5) 

which again is a nonstationary property in the sense explained with regard 
to Eq. (2.8c). Further properties of g(t) may be shown to be 

g(t,)lg(tz) + ) = ~([1, [2) (3.6a) 

where 

7(tl, t2) ~ 7~s(tl - t2), tl, t2 > t~ (3.6b) 

provided an autonomous macrodynamics exists, i.e., provided the limes in 
Eq. (1.7) 

lim I ( t ) = I  (3.7) 
t ~  + o o  

exists and is approached rapidly for t >> G. 
Thus, the RF g(t) is seen to behave in a nonstationary way at short 

times, which is connected with the initial slip of pertinent correlation 
functions and hence with the memory of the initial preparation of the 
system. 

Because of Eq. (1.7), the existence of an autonomous macrodynamics 
enters the GLE (3.1) explicitly. However, the theory is more complicated 
now than the corresponding CP approach given in Section 2. This is reflec- 
ted, for instance, by the fluctuation-dissipation theorem (3.2b), which gets 
even much more complicated for the corresponding nonlinear theory. 
These difficulties can be traced back to the orthogonality requirement, 
which we will drop in the following. 

4. THE N E W  T I M E - L O C A L  GENERALIZED LANGEVIN  
E Q U A T I O N  

The GLEs (2.2) and (3.1) introduced so far obviously not only single 
out a particular instant of time, but also possess some properties of non- 
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stationarity connected with the existence of lifetime effects in the system. As 
discussed in more detail in I, these lifetime effects lead in the systematic 
parts of LEs to the convolution in Eq. (2.2) and to the time dependence of 
I(t) in Eq. (3.1). In the random force terms they lead to the finite 
correlation time tc. o f f  or g, causing the noise to be colored in all realistic 
systems. 4 This is obvious physically, since the relaxation originates from 
microscopic events, binary collisions, e.g., which usually have a finite 
lifetime. 

4.1. Formulat ion of the Langevin Equation 

In the TLP approach presented in I it was found natural to split both 
the correlation matrix C(t) and the expectation values a(t) into a 
macroscopic and a microscopic part [cf. Eq. (1.3)] and correspondingly 

a( t )=a(+)( t )+atml( t ) ,  t > 0  (4.1a) 

where a (+) denotes the macroscopic or irreversible branch of the time 
evolution of a(t), whereas alm)(t) is of purely microscopic origin. We note 
Eq. (1.4) (and hence a(~'l(t)=0, t>>t~.) and the fact that C ~+) and a ~+) 
obey the autonomous macrodynamics [cf. Eq. (1.6)] 

ci(+)(t) = - Ia(+l( t ) ,  C~+l(t) = - IC l+ t ( t )  (4.1b) 

for all times t. 
The idea of projection does not fit this picture very explicitly, as dis- 

cussed extensively in I. This is also obvious from the GLEs (2.2) and (3.1), 
the systematic (or friction) parts of which are, so to say, not completely 
decoupled from the microscopic world, since they describe the time 
evolution of a(t) and not of a(+)(t). 

Let us therefore introduce a new kind of GLE by simply making the 
ansatz 

f lU) = - I A ( t )  + Z(t), - oo < t < Go (4.2) 

where 

Z(t)  = i(L - iI) A(t)  (4.3) 

where I was introduced in Eqs. (1.7) and (3.7). 
Equation (4.2) is a trivial reformulation of Eq. (2.1) and in fact is valid 

for any matrix /. However, if we want to consider Eq. (4.2) as a GLE, a 

4 Notable exceptions are classical hard-sphere systems. 
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necessary condition is that Z( t )  may be taken for a random force (RF), i.e., 
that for 

K(t)  = ( Z ( t  + s) lZ(s )  + ), Vs (4.4) 

we have 

K(t) = 0, Itl>>t,, (4.5) 

This condition fixes I in an unambiguous way to be just the kernel of the 
autonomous macrodynamics occurring in Eq. (4.1b). In fact, using 
Eqs. (1.3) and (1.4) together with (A.la), one readily verifies that (4.5) is 
valid if and only if I corresponds to Eq. (4.1b). We note again that the 
ultimate condition for Eq. (4.5) to be valid consists in the assumption (see 
Section 1) that an autonomous macrodynamics exists, which is tantamount 
to the proposition that A represents a complete set or that Eq. (2.6) in the 
CP approach and hence Eq. (1.4) are fulfilled. 

In view of Eqs. (2.6) and (4.5), Z behaves as "randomly" as f, so that 
at this level there is no qualitative difference between the two forces. 
However, for the behavior of the correlation matrix Q of the RF Z with A 
we find 

Q ( t ) = ( Z ( t + s ) ] A ( s ) + ) ,  Vs (4.6a) 

which is stationary, in contrast to Eqs. (2.8c) and (3.6a). From Appendix B 
we obtain 

Q(t) = (st + I) c(m)(t), t > 0 (4.6b) 

and hence 

Q(t) = o, t ~> t,. > 0 (4.6c) 

so that obviously Z is correlated over a microscopic period o f  time with the 
observables A. Consequently, we find, upon averaging our GLE (4.2) with 
some nonequilibrium ensemble p(to), that the contribution of the RF does 
not vanish identically as is the case with GLEs introduced earlier. Instead, 
we find, in using, for example p(to) of Eq. (2.3) of I and linearization from 
Eq. (4.2), 

&(t) = - I a ( t )  + Q( t - to) a(to) (4.7a) 

so that we also have 

Q(t) = [ I -  I(t)  ] C(t) = (St + I) C(t) (4.8) 
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the interrelation of Q with the "memory" kernel (2.5) having been given 
earlier [cf. Eq. (3.13) of Ref. 5]. Note that corresponding to Eq. (4.7a) we 
also find 

C(t) = - I C ( t )  + Q(t) (4.7b) 

so that both the initial slip and the memory of the initial preparation are 
traced in the present theory to the colored noise character of the RF via 
the nonorthogonality of A with Z. 

4.2. Proport ies of the Random Force 

Before discussing this point further, we will give some additional 
properties of the RF Z. For this purpose we introduce a kind of interaction 
representation of the GLE (4.2), i.e., we introduce 

A w(t) = e"A(t),  Z . , ( t )  = e " Z ( t )  

so that 

(4.9) 

f t , . ( t )=Zw(t ) ,  - o o < t < o o  (4.10) 

which means that there is no friction term. This is no surprise, since the 
interaction representation may be understood as looking at the dynamics 
from a moving reference frame chosen such that the macrodynamics is just 
compensated and Aw(t ) is driven by fluctuations only. 

In terms of Zw we obtain (see Appendix B) for F, where 

F = A  - F ,  A = C(+!(0) (4.11) 

the expression 

F= dt <Zw(t) lA+ ), 

= fo ~ dt eltQ(t) 

A =A(0)  

(4.12) 

As shown in I, we have 

F =  0(~), = t~./tR (4.13) 

so that F vanishes for ~ ~ 0, i.e., for a complete separation of microscopic 
(tc) and macroscopic (tR) time scales. 
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For the correlation matrix of Z,, with A we find from Eqs. (4.6) 

R( t )  = ( Z ( t  + s)tJ~(s) + ) = -Q( t )  (4.14a) 

Rw(t) = ( Z ~ ( t  + s)[ A(s) + ) = -0 ,e '@(t)  (4.14b) 

and from Eq. (B.5) 

s = • _ i (2F= f o  dt R,.(t)  (4.15) 

where (2 was introduced in Eq. (2.4) and Y in Eq. (1.13). 
Moreover, from Eq. (4.14a), we obtain immediately, using F =  C(0) 

and iC(0)= f2F, that 

U "= I - i g 2 =  d t R ( t ) F  -1 (4.16) 

so that the irreversible part of the transport kernel and the matrix of 
generalized Onsager coefficients 5e are related to the correlation functions 
of Z and Zw, respectively, with zi. In Brownian motion proper zi is propor- 
tional to the total force acting on the particle. Hence, we may interpret 
R( t )  as describing the correlations between the friction and the total force, 
and Eqs. (4.15) and (4.16) may be viewed as establishing the relation 
between U, 2f ir, and these correlations. 

One also may derive a fluctuation-dissipation theorem (see Appen- 
dix C), i.e. (note F =  F +) 

f 
O 

I F + F I  + = dt  [ < Z d t ) l Z , , . ( O ) + >  
oo  

+ < z J o ) l  z,,,(t) + ) ]  (4.17) 

which may be viewed as relating the correlation matrix of the RF to the 
macroscopic decay properties of the system. A related expression is given in 
Eq. (7.3). 

Finally, we note that our RF obeys the Heisenberg equation 

2(t)=izz(t) (4.18) 

just as A( t )  itself does [cf. Eq. (2.1)], where the difference between A and 
Z consists in the initial condition 

Z ( t l )  = i(L -- iI) A ( t l )  = f i ( t l )  + IA ( t l )  (4.19) 



402 Der 

which may be viewed as considering z] or the corresponding current with 
the macroscopic or systematic part - I A  subtracted away. The RF of the 
LE (2.2) obeys in turn [Eq. (2.7)] 

with initial condition 

j~(t) = iQLQf(t) (4.20) 

f(O) = i(L § ~2) A(O) (4.21) 

so that f ( t )  is governed by the projected dynamics given by QLQ. This is 
usually considered as the reason for the decay property (2.6) of the 
correlation matrix of the RF (2.5). However, as seen from Eq. (4.5), the 
projection is not necessary to produce the ensuing randomness. Instead of 
projection, one may just as well use the subtraction procedure (4.19), 
which obviously is conserved under Eq. (4.18), so that in this way the 
systematic part is removed from Z at all times. 

A different way of demonstrating the randomness of Z(t) is found by 
noting that Z(t) = (0, + I) A(t) and that 

(c~ t + I) e -~'B = 0 

where B is an arbitrary matrix. Consequently, the application of the 
operator (0, + I) to A(t) destroys any contribution in A(t) which obeys the 
autonomous macrodynamics. Thus, Z(t) contains only the fluctuations 
around the latter which are of purely microscopic nature. 

4.3. A Simple Example 

Let us consider a simple example for the purpose of illustrating some 
of the special features of our GLE (4.2). For demonstrating the relationship 
of our GLE to Eq. (2.2), we do not start out from a specific microscopic 
model and calculate Q(t) and K(t) directly. Instead, we assume Eq. (2.2) is 
already known, M(t) [cf. Eq. (2.5)] being given by the simple exponential 
ansatz 

M(t) =be c, (4.22) 

where the case of a single observable is considered, so that M(t) is a scalar 
function. 

Using the results of I, Appendix A, we can easily obtain the 
correlation function C(t) corresponding to Eq. (4.22) as 

C( t )=  (2e m l - I e - ~ l t l ) F = e - m l A - e  ;.ltlF (4.23) 
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where d = [ 2 / ( 2 - I ) ]  F, F =  [ / / ( 2 - I ) ]  F, and obviously C(0)=  F and 
0(0) = 0, as it must be. The I and 2 are connected with the parameters of 
M(t) via ( x : =  4b/c 2) 

C 
1= 5 [ 1 -  ( l - x )  1/2] =bc (I + x +  " " )  

(4.24) 
C 1/2] 1 

2 = ~  [ l  + ( 1 - x )  = - ( 1 - X c  . . . .  ) 

since I =  iZm and 2 = i z  m .  Note that x = ~ + O(~). 
For  the given case of a single variable, we obtain from Eqs. (4.4) and 

(4.6a), 
X{t ) i - C ( t )  ~ - / 2 C ( / )  = (/2 _ ~2) C(t) (4.25)  

so that, by means of Eq. (4.23), 

K(t) = I(I+ 2) e- ; l t lF 

Analogously, we find 

Q(t)= Ie-;~'F, 

Q(t) = 7 / / [ 2 2 e  ~' - (2 + I) e ~'] F, 
A - - I  

t~>0, 

t < 0  

(4.26) 

(4.27) 

The behavior of these quantities is given in Fig. 1 for two different 
values of ~ = t,./tR. It is interesting to note that K(t) = K( - t), whereas Q(t) 
and R(t) show a strong asymmetry with respect to time inversion. This is 
particularly marked in the limit r --, 0 (white noise), which we introduce for 
later use. For this purpose, we assume there is a slowness parameter q in 
the theory (see Section 4.3 of I), so that we may write I =  q2[ We introduce 
a scaled time t * =  q2h and obtain for q--* 0, writing x(t)= x [ t* ] ,  

K [ t * ]  = 2q4[ 2 6(t*) F (4.28a) 

as expected in that limit. Moreover, 

Q [ t * ]  = 2q2[0(- t * ) [ e x p ( -  ]t*] )] F 

so that Q [ t * ]  = 0  for t * > 0 ,  and 

(4.28b) 

R[t*]=2q4F[6(t*)--O(--t*)exp(--[t*l)]F (4.28c) 

Thus, we find that for t * >  0, Z is not correlated with A, whereas we 
observe strong correlations for t* <0 ;  see Section 8 for a detailed dis- 
cussion of this point. 

822/46/|-2-26 
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Fig. 1. The correlation functions ( ) K(t) (- -) and Q(t)= QI + >(t) over time t for the model 
considered in Section 4.3. We put F= 1 and choose the parameters as 1 = 1 and 2 = 10, so that 
lifetime effects are of the order of 10%. 

5. EXPLICIT EXPRESSIONS FOR R A N D O M  FORCE 
CORRELATION M A T R I C E S  

The RF  Z is qualified by its correlation matrices K, Q, and R as 
introduced in Section 4. If Z is of non-Gauss ian  nature, one also needs 
higher order correlators. The microscopic expressions given in Eqs. (4.4), 
(4.6), and (4.14) are still implicit, since they contain L which usually is not  
known. Explicit expressions can be obtained in a straightforward manner  
by using the method of time-scale expansions (TSE) as introduced in Sec- 
tion 6 of I. For  doing so we note that  K and Q obey the decay properties 
(4.5) and (4.6c). Thus, we may find a time t o that  is still of order  tc but is 
sufficiently large that  K and Q are negligible for t > t ~ 

Consequently,  we need to consider times t < t o only. For  simplicity, we 
study the case of A even only, so that s [cf. Eq. (2.4)] is equal to zero. We 
introduce [cf. Eq. (6.3) of I ]  

q ( t ) =  d t ' ( t - t ' ) C ( t ' )  (5.!) 

so that 

C(t)  = F + q(t)  (5.2) 
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Moreover, we observe 

O(t) = dt' C(t ' )=  C(t) (5.3) 

and write Eqs. (6.6) and (6.7) of I as 

I=  --(l( t ~ + 4( t ~ q( t ~ (5.4) 

keeping lifetime effects in leading order only, as will be done throughout 
the following. 

Now, rewriting Eq. (4.7b) as 

Q(t) = (8, + I) C(t) (5.5) 

we find from introducing Eqs. (5.2) and (5.4) into (5.5) and after some 
manipulations 

Q(t)= ~Z(t)]A +) = Oo + Q~ + "'" (5.6a) 

where 

Qo(t) = _~,o dt' C(t') 

Ql( t )= - fo~ f'~ fo 2 dt3 0(t l)  F- 'C(t3)  

(5.6b) 

which are the first members of the time scale expansion of Q(t). By a 
similar argument we find 

where 

K(t) = K o + K1 + "'" (5.7a) 

Ko(t) = - O ( t )  
~ 

K~(t) = dtl dt2+ dt~ dtz O(t~)O(t2)F 

and we note that in the case of a single observable 

Kl( t )=fo~ fo~ -1 .. (5.7c) 

If the time scales given by tc and tR are sufficiently well separated so 
that lifetime effects are not too large, Eqs. (5.6) and (5.7) give a complete 
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description of the behavior of Q(t) and K(t) for 0 < t <  t ~ In practical 
applications, in many cases (i.e., if lifetime effects are negligible) it will even 
be sufficient to keep Q0 and K 0 only, so that a very simple estimate of the 
behavior of the RF is obtained. The above procedure can also be carried 
over to the calculation of higher order correlators of the RF. 

6. SPECTRAL DENSITY OF FLUCTUATIONS A N D  
GENERALIZED LANGEVIN EQUATION 

Additional physical insight into the GLE proposed in Eq. (4.2) can be 
obtained by studying the Fourier transform C(co) of the correlation matrix 
C(t), where Fourier transforms are identified with a caret in the following, 
i.e., 

2(co) = dt ei~ (6.1) 
oO 

for any function x(t). The d(co) may be identified with the spectral density 
of the fluctuations of A(t). It is directly accessible experimentally in many 
cases, e.g., by light or neutron scattering experiments. As is well known, C 
is connected with the Fourier-Laplace transform C, 

~ = ( A ] z ~ L ] A  + )  (6.2) 

introduced earlier [cf. Eq. (3.2) of I by 

d ( c o )  - -   (co + -  (co - 

=2~z (AI 6(co-L)]A  + ) (6.3) 

We note that C(co) is a Hermitian matrix, 

(~(co) = [E'(co)] + (6.4) 

for real values of co, due to Eq. (A.1). C is related to the Fourier transform 
2" of the response matrix or the matrix of response functions Z" by the 
expression 

cod(co) = (2//}) 2"(co) (6.5) 

where 

Z;'j(t) = �89 A j} )eq (6.6a) 

and 

Z~'j(t)-- (1/2h)([A,(t),  Aj] )eq (6.6b) 
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where {...} and [. .-]  denote the Poisson bracket and the commutator in 
the classical and quantum cases, respectively. 

The spectral density C" and hence 2" can be related to the Fourier 
transform of M ( t )  [cf. Eq. (2.2)] by the dispersion relation, which in the 
particularly simple case of a single observable (n = 1) reads [cf. Eq. (5.22) 
of Ref. 6] 

1 
- -  )~"(co) = FM(co) 
/~co 

x co -  P - 217/(co')_ 2 + (6.7) 
2~r co - co'j 

where P denotes the principal value. This expression corresponds to a 
modified Lorentzian line shape, to which it reduces for vanishing lifetime 
effects. It will be seen below that the ansatz (4.2) leads to expressions for 
the line shape that more explicitly show the deviations, due to lifetime 
effects, from the Lorentzian even in the case of several observables. These 
expressions also differ largely from those obtained (7 9) in the time-local 
approach based on Eq. (3.1). 

6.1. Spectral Density, Line Shape, and Random Force 

Using Eq. (4.4), we may relate the correlation matrix of the random 
force (RF) to the spectral density, 

t((co) = ( I -  ico) C(co)(I+ + ico) (6.8a) 

or for the case of a single observable (n = 1) 

/,?(co) = (i2 + co2) ~(co) (6.8b) 

Introducing 

we write correspondingly 

and for n = ! 

~(co) = ( I -  ico)-I (6.9) 

(2 = f~kc~ + (6.10a) 

~(~)  =/~(~)/(co2 +/2)  (&lOb) 
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In the same way we obtain expressions for the correlat ion matrices Q and 
R introduced in Eqs. (4.6a) and (4.14a), i.e., 

and 

O(co) = R(09) ~(co) + 
1 rT-t ,, (6.1 la)  ~tco)  I + + ico 

/~(co)  = i 090 (co )  = K ( c o )  - K ( c o )  I +  ~ ( 0 9 )  + (6.11b) 

As is obvious from Eq. (6.10b), which is to be contrasted with 
Eq. (6.7), our  approach based on the G L E  (4.2) leads to rather  explicit 
expressions in which the modification of the Lorentzian line shape due to 
lifetime effects is directly related to the properties of the RF contained in 
/~'(co). To discuss this point  further, we taylor expand/~ ,  

K(CO) = Ko + coK1 + "'" (6.12) 

and note that Kn = O ( ~ ) ,  n ~> 1, as a consequence of the decay proper ty  
(4.5). Thus, (6.12) corresponds to a time scale expansion of k that con- 
verges for all co, where 

Moreover ,  we find 

Icol < 090, coo = O(1/t,.) ( 6 . 1 3 )  

Kt = 0, l =  1, 3,... (6.14) 

if C(t)  = C( - -  t), as is the case for A even [cf. Eq. (A.2b)]. 
It is interesting to consider the above expressions for small and large 

co. In the latter case, i.e., for co>> tR 1, we obtain from Eqs. (6.8a) and (6.5) 

so that 

20) A,,,09, 
~ ( 0 9 ) = 0 9 2 d ( 0 9 ) = T z  t ~, Ico[ >> t~ I (6.15a) 

IJK(09)II ~ I091 ~, 09--, ~ (6.15b) 

if the potential  is such that all sum rule expressions do exist. Accordingly, 
we also obtain [cf. Eq. (6.11a)] 

Q(co) = -icoC(09) = -(2i/ /3) 3~"(09), Icol >> tR' (6.16a) 

and 

110(o9)[I ~ Ico{ ~, lcot ~ oo (6.16b) 
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Thus, the high-frequency properties of /~  and 0 are directly related to the 
properties of the spectral density or the response matrix. For low frequen- 
cies, i.e., Icol ~ tc  ~, we find by introducing (6.12) into Eq. (6.10) 

(~(co) = ~(co)(K o + <oK 1 + "" ") (~(co) + (6.17a) 

where explicit expressions for K~ are given in Appendix D. For not too 
large ~ and co, i.e., neglecting terms of order (cote) 2 or  ~2 and higher, we 
obtain the following approximate relations: 

(~(co) = ~ (co ) [ ( I -  ico) A + + h.c.] f~(co) + 

= (I-- ico) ~ d + h.c. (6.17b) 

Using Eq. (A.10), we obtain for the case of even A ( E =  1) from Eq. (6.17b) 

C(co) = ~(co)[5: + s + ] r (6.18) 

where &a was introduced in Eq. (1.13). 
For n = 1 we obtain in particular 

C(co) = 2 ~ / ( I  2 + 0) 2) (6.19) 

Equations (6.17) (6.19) are low-frequency expressions of C which are 
correct if terms of order (cote) 2 and ~2 are negligible. Thus, they include 
lifetime effects in lowest order. 

Low-frequency expressions for the spectral density have long been 
known. However, our expressions, say, Eq. (6.19), differ from the conven- 
tional ones [e.g., Eq. (121, 15) of Ref. 10] by the inclusion of lifetime 
effects into our theory. It is interesting to note that the regions of validity of 
the high- and low-frequency expressions given above overlap if ~ is not too 
large. In fact, Eq. (6.15a) is valid for ]co] >> 1/ tR,  whereas Eqs. (6.17)-(6.19) 
are valid for Ico] < tc ~. Thus, we find that at low frequencies, i.e., in the 
regions of the peaks at least, (~ is given by a (multivariate) Lorentzian, 
whereas the high-frequency (wing) region is given by the spectral density of 
the random force. For the case of even A, this is correct with lifetime effects 
of leading order included. In the even-odd case, we find that the 
Lorentzian already is biased by lifetime effects in lowest order, since 
A - A + = O(~) in Eq. (6.17b), 

6.2. Laurent Expansion of Spectral  Density 

In I the Laurent series expansion of the Fourier Laplace transform 
C(z) was shown to reveal interesting relations between macro and 
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microphysics. A corresponding expansion also can be found for C'(co). For 
this purpose we split C(t) as 

C(t) = C(M)(t) + c(m)(t), - oo < t < oo (6.20) 

where 

C~M)(t) = 0( _+ t) [exp( - - I  ~ + ~t)] A/-+t (6.21) 

according to Eq. (2.23) of I, with 0 denoting the Heaviside step function, 
and we note that I (+) and I (-) are of different sign [cf. Eq. (A.ga)], so that 
c(M)(t) is decaying for t ~ _+oo. 

From (6.21) we obtain, using Eqs. (A.7), (A.9), and (A.10), 

(],(M)(co) = ~(~0)(I-- ico) A +~(co) + + h.c. 

and for even A 

(6.22a) 

(6.22b) 

so that d(M/ is seen to agree with the low-frequency expression (6.17b), 
which is valid if co and ~ are not too large. 

The analytical continuation of d(M~ is readily obtained by simply con- 
sidering Eq. (6.22a) for arbitrary complex values co=co'+ico". Then, 
~(co) (~+)  is found to have just n poles in the upper (lower) half-plane 
situated a distance of the order of t R i away from the real axis. Consequent- 
ly, for sufficiently large co, i.e., Icol > c5, c5 = O(1/tR), we find the Laurent 
expansion of d(M), 

ao 

C(M/= ~ c~co +~ (6.23) 
k = - I  

where the matrix coefficients :~k are found most easily by introducing the 
Laurent expansion of N, 

~ ( c o ) = ~  ~ ( / ' ] ' ~ 1  (6.24) 
co ==o \ico/ 

where 1 denotes the unit matrix, into Eq. (6.22), so that, for example, 

~_l=i(A(+) A(+~+)=i(A(+) A( I) 
(6.25a) 

2 = 5 ~  = S ( + ~ + 5 r  ~(-) 
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Moreover, one easily concludes that if C(t) = C ( -  t), it follows that e k = 0 
for k = 1, 3,.... Thus, for the case of all A even, we find 

c~ _ 1 = 0 (6.25b) 

On the other hand, due to its rapid decay for [tl >> t,,, we may Taylor 
expand c(m)((D) as 

c(m)(ee) =-- ~ O~kco k (6.26) 
k=O 

which is a time scale expansion valid for !col < e3, where 03 = O(1/tc). Now, 
inside its circle of convergence, Eq. (6.26) also may be used for complex 
values of co, so that by adding Eqs. (6.23) and (6.26), we find 

C(ee)= ~. :r k (6.27) 
k= oo 

which is the desired Laurent expansion of C'(ee) valid in the annulus 
e3 < leeF < 03. We note that the Laurent expansion provides us in a natural 
way the splitting of  C into a microscopic and a macroscopic part [cf. 
Eq. (6.20)], since ~(m) and ~(M) correspond just to the regular and prin- 
cipal parts, respectively, of the Laurent expansion of C. 

6.3. Complex Sum Rules 

By means of 

1 ~; _/k+ ~)d(co) 
a~ = 2-~ z . dee(• 

we find from (6.27), using Eqs. (6.25) and (6.5), 

co 

and 

(6.28) 

ffl  dee )?"(co) = 5 ~ + S + (6.29) 

We note that the integration is to be carried out along a closed contour 
encircling the macroscopic but not the microscopic singularities of (9(09), 
i.e., the contour must lie inside the annulus of convergence of the Laurent 
expansion. 
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The above expressions may be considered as a kind of sum rule in the 
complex frequency domain relating dissipative quantities to (~ or 2", 
whereas the usual sum rules yield static or nondissipative quantities, such 
a s  

~-fi -o~ do 2"((~) = (2F (6.30) 

where i(2F is just the nondissipative part of the matrix of Onsager coef- 
ficients 50, whereas the quantity 5 ~ + 50+ will be seen in a subsequent 
paper to represent just the entropy production. 

7. GENERALIZED D IFFUSION A N D  M O D I F I E D  EINSTEIN 
RELATION 

In Brownian motion theory, an important role is played by the dif- 
fusion constant (or tensor in anisotropic media) characterizing the 
asymptotic behavior of the mean squared displacement. In our general 
theory, we may introduce a corresponding quantity by considering the 
matrix 

u(t)  = ( 6 x ( t ) 1 6 x ( t )  + ) (7.1a) 

where 

6Xk(t) = dt' Ak(t ' )  = Xk(t)--  xk(O) (7.1b) 

so that xk(t)  is a distance if Ak(t  ) is interpreted as a velocity. Using the fact 
that the correlation matrix C(t) is decaying for t--* _+c,~, we find that for 
very large t 

f 
3 0  

u(t) = t C(t ')  dr' =: 2Dr (7.2) 

so that the Hermitian matrix D corresponds formally to the diffusion ten- 
sor. 

Using Eqs. (4.4) and (4.3), we drive from Eq. (7.2) 

f 
~ 

21DI + = dt ( Z ( t ) I Z  + ) = K o (7.3) 
oQ 

where Ko was introduced in Eq. (6.12). Equation (7.3) relates D to the 
correlation matrix o f  the RF. To discuss this relation, we consider the case 
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~ 0 (white noise limit) first. Then, K0 agrees with the rhs of Eq. (4.17), 
i.e., we obtain 

2D = I -  ~F+ h.c. for r --+ 0 (7.4a) 

which, if specified to the case of (one-dimensional) Brownian motion, is 
just the well-known Einstein relation 

D = (kT /m)  I -~ (7.4b) 

connecting the diffusion with the friction constant. Consequently, 
Eq. (7.4a) may be considered as the multivariate version of the Einstein 
relation of Brownian motion theory. 

For the realistic (colored noise) case, one obtains instead of Eq. (7.4a) 
from (7.3) by means of (D.2) 

2D = I -~A  + b.c. + O(~ 2) (7.5) 

which explicitly shows that the multivariate Einstein relation (7.4a) is 
modified if lifetime effects are not negligible, Eq. (7.5) including in first 
order the correction terms due to the finite duration of the binary 
collisions. 

In the example considered in Section 4.3 we may calculate D explicitly, 
i.e., we obtain from Eqs. (7.3) and (4.26) 

D = F I  l(1 + I/2) (7.6) 

which clearly shows the influence of the finite lifetime and obviously 
reduces to Eq. (7.4) for ~ , I / 2 - - * 0 .  

For a further discussion of the role of the general diffusion matrix D, 
we rewrite the low-frequency expression (6.17b) of C as 

1 
C(~o) = W -  i~od -1 + h.c. (7.7) 

where 

W = d -~I (7.8) 

Let us consider the case of even A in the following. Then, we find from 
Eqs. (7.5), (7.7), and (7.8) and W= W + [prove by means of Eqs. (A.7), 
(A.9), and (A.10) for E =  1] 

1 (2D_~) 1 (7.9a) 
C ( r  l _ i c o d _  1 D l +icod-1  
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which for the case of a single observable reduces to 

2D-1 
C(co) = D-2 + - - ~ 2  A 2 (7.9b) 

Again, these are correct low-frequency expressions if lifetime effects are not 
too large. Equation (7.9) expresses the Lorentzian directly in terms of the 
generalized diffusion matrix and the modified variance matrix of the fluc- 
tuations [cf. Eqs. (1.10)-(1.12)]. For vanishing lifetime effects, Eq. (7.9) 
reduces to well-known expressions [cf. Eq. (124, 6) of Ref. 10]. 

8. HEISENBERG D Y N A M I C S  AS A GENERALIZED 
O R N S T E I N - U H L E N B E C K  PROCESS 

There are essentially two different points of view in looking at a GLE. 
On the one hand, by virtue of the deterministic equations of motion (4.20) 
or (4.18) for the random force (RF), there is a one-to-one correspondence 
between the solutions of the Heisenberg equation (2.1) and the 
corresponding GLE such as (2.2) or (4.2). On the other hand, due to the 
chaotic behavior of the RF, it is reasonable to reinterpret the latter as a 
stochastic process. Then, the GLEs become stochastic differential or 
integrodifferential equations which define the stochastic process A(t). The 
properties of the RF and hence of A(t) are now fully determined by specify- 
ing the RF correlation matrices such as Eqs. (2.5) and (4.4) together with 
all of the higher order correlators (if the process is non-Gaussian). If these 
correlators are calculated from the microscopic expressions for the RF, one 
finds that all correlators C(t), e.g., of the stochastic process A(t), agree with 
those obtained from the Heisenberg equations (2.1). In this sense one may 
say that Heisenberg dynamics and the stochastic process are completely 
equivalent to each other. 

Now, the GLE (4.2) shows that A(t) may be represented by a 
generalized Ornstein-Uhlenbeck (OU) process. In fact, let us consider 
Eq. (4.2) as a set of stochastic differential equations and consider the 
correlation matrix C(z) in the stationary state, i.e., 

lim ~ A ( t + ~ ) A + ( t ) ) ) = :  C(z) (8.1) 
l ~ : x )  

where ( ( . . . ) )  denotes the stochastic average. Then, as is well known, /~  
the Fourier transform of C(r) is given just by Eq. (6.10a) in accordance 
with our proposition that A(t) is repreented by a generalized OU process. 
By means of the Wiener-Khinchine theorem this may also be stated as 

1 1 
{(  A~A +, ) )  = ~(5(co - co') f - -  ie) Is i+ + ico (8.2a) 
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where the stochastic quantity Ao~ is formally given as the Fourier transform 
of A(t). In this sense, we also have 

~k(co) 6(co - co') : << z~z ~, >> (8.2b) 

and hence 

1 1 
A + : - -  (<ZoZ+'>> I + + ico' <<A ..... '>> I-ico 

(8.2c) 

The OU process considered is generalized since the RF Z corresponds to 
colored noise. The ordinary OU process corresponding to white noise is a 
Markovian process with finite correlation time of order tR. Colored noise 
then makes A(t) a non-Markovian process. As a consequence, the 
correlation matrix C(t) displays the initial slip. The important point is that 
in the wings the correlation matrix C(t) still obeys the autonomous 
macrodynamics (cf. Fig. l of I) which governs the systematic part of the 
GLE (4.2). Thus, we may say that our GLE particularly clearly displays 
the basic fact that the non-Markovian process A(t) is fully consistent with 
the existence of an autonomous macrodynamics. This is contained in the 
GLE (2.2) in a very implicit way only. 

In the framework of the (generalized) OU process it usually is felt 
natural to propose that the RF is not correlated with the initial value of 
A(to), i.e., 

<<z(t) A(to) >> = 0 (8.3) 

However, it must be noted that this property is not conserved during time 
evolution in general. Instead, though starting from Eq. (8.3), we find in the 
stationary state 

1 
((Z"~A'+J>> = ((Z~oZ+' >> I + + ico' - -  - 2~ 6(co - co') ~)(co) (8.4) 

where 

Q ( t ) =  lim <<z(t+s) A+(s)>> (8.5) 
s ~ o O  

The qualitative properties of Q are seen best from Fig. 1 and the discussion 
given in Section 4.3. In the white noise limit we find that Z is still 
orthogonal to A for t > 0, but not for t < 0. For colored noise we find that 
Z is even for t > 0 correlated over some time t,. with A, these correlations 
resulting from lifetime effects. 
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Hence, we may say that correlations of Z with A are a natural 
ingredient of the OU process described by the GLE (4.2) in the stationary 
state. The orthogonality requirement (8.3) is therefore seen to be rather 
alien to the OU process and it seems consistent to replace it with 

( ( Z ( t + t o )  A ( t o ) ) ) = Q ( t ) ,  Vt, t o (8.6) 

so that Eq. (4.6a) appears as a quite natural result. 
The strong asymmetry of Q obviously is vital for reconciling the rever- 

sible equation (2.1) with the apparently irreversible GLE (4.2). However, it 
might be argued that this asymmetry has been introduced from outside. In 
fact, instead of the GLE (4.2), we also may consider the ansatz 5 

f lU)  = - I  ~ )A(t) + Z I-  I(t) (8.7) 

Using Eq. (A.9a), which for the case of even A ( E =  l) reads 

i ~ + t = _ i (  t (8.8) 

we find that the systematic part of Eq. (8.7) describes a decaying solution 
for t--, -oc .  Nevertheless, the RF correlation matrix K ~- ) obeys essentially 
the same properties as K (+) [cf. Eqs. (A.13a)-(A.13d)], so that Eq. (8.7) is 
as reasonable a description of A( t )  as Eq. (4.2) is. 

The behavior of Q is crucial here. As seen from Eq. (A.14b), Q(+I is 
obtained from Qt / essentially by time inversion. Hence, both in Eq, (4.2) 
and Eq. (8.7) the Z - A  correlations are always weak (or vanishing in the 
white noise case) if considered in the direction of time where the frictional 
damping takes place [which is t--* +or in Eq. (4.2 t and t ~ - ~  in 
Eq. (8.7)], whereas we observe long-lived correlations if we take the 
opposite direction of time. 

Moreover, Eqs. (4.2) and (8.7) are for E =  1 invariant against momen- 
tum inversion, or, more rigorously, against any transformation that con- 
verts iL into - i L .  Hence, because of the iLt invariance of Eq. (2.1), we 
may say that the GLEs (4.2) and (8.7) no longer feel the direction of time 
associated with the microscopic motion. Thus, we are free to choose any 
one of the GLEs (4.2) and (8.7) and call forward the direction of time in 
which frictional damping occurs. This choice, then, is in agreement with 
our macroscopic experience, since it corresponds to a macroscopic descrip- 
tion of the system in the sense of the phenomenological Langevin equation 
[cf. (1.1)]. In particular, under this choice, there are, apart from lifetime 

5 N o t e  t h a t  w e  h a v e  u s e d  I - 1  I~l,  Q ~ Q I + ! ,  Z - Z  t ~/, a n d  K =  K / + ~ so  f a r  fo r  s i m p l i c i t y  o f  

n o t a t i o n .  
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effects, no correlations between Z and A, whereas there are strong 
correlations if we look backward in time, due to the asymmetry of Q(-+). 

Hopefully, the above discussion sufficiently clearly demonstrates our 
point of view that the irreversible look of the exact GLE (4.2) or (8.7) is 
not the result of an ad hoc introduced breaking of the time symmetry. 
Instead, our asymmetric formulation of the symmetric law (2.1) simply 
expresses the fact that the observables of our set A generally tend to relax 
once we observe at some time to a macroscopic fluctuation of A(t), and 
that this relaxation is observed if we look from to into either the direction 
of t--* +oe or t ~  -oo .  

In this formulation, the reversible nature of the underlying Heisenberg 
dynamics makes itself felt only in the time-asymmetric behavior of Q(+)(t), 
in particular, in the long-lived correlations observed when we look 
backward in time. In the description of any experiment, however, the GLE 
is used only forward in time, so that these correlations do not play any 
role. Hence, we may drop them. Then, our GLE describes a genuinely 
irreversible dynamics, which nevertheless is identical to the Heisenberg 
dynamics !f we use the GLE forward in time only. 

9. C O N C L U D I N G  R E M A R K S  

The generalized Langevin equation (4.2) we have proposed in the 
present paper is particularly simple. Note that our GLE is actually a non- 
linear equation, since the set A must also comprise all powers of some 
primitive variables contained in A. Although Eq. (4.2) is exact, it is iden- 
tical in structure to the phenomenological GLE obtained from the ad hoc 
procedure of adding a noise term to an otherwise deterministic 
macroscopic equation. Equation (4.2) makes this procedure a rigorous one, 
with the result that the noise is colored and correlated with the initial value 
of A over some microscopic time t~.. 

The latter fact is the most unusual feature of our approach. However, 
we hope to have clarified that this property is not as unphysical as it might 
seem, although it is rather unusual in the context of conventional stochastic 
calculus. Nonorthogonal  noise has recently been discussed as a special 
quantum effect and necessary modifications of stochastic calculus have 
been given. (~2/ On the other hand, the functional-calculus approach 
developed recently (~3/ provides a very elegant way for dealing with the 
colored noise RF. A convenient modification of this approach in order to 
account for nonorthogonal noise would be highly desirable from the point 
of view of the present paper, since then the Fokker Planck equation 
associated with the GLE (4.2) also could be obtained in terms of a time 
scale expansion (called v-expansion in Ref. 13). 
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The correlations of the RF Z ( t )  with the observables A ( t ' )  at earlier 
times, i.e., for t ' <  t, arise from lifetime effects and vanish if the latter are 
negligible. The theory developed in the present paper clearly separates the 
autonomous macrodynamics from the lifetime effects. This is particularly 
clearly seen in the expressions for the spectral density, which essentially are 
products of multivariate Lorentzians with the spectral density K(co) of the 
RF [cf. Eqs. (6.10)], the Lorentzians corresponding to the autonomous 
macrodynamics, whereas the RF is represented by K(co), which depends on 
co due to the lifetime effects. 

In a subsequent paper it will be shown that this clear separation of 
macrophysics from microphysics obtained by our time-local formulation of 
the generalized Langevin equation will also lead to a convenient foun- 
dation of fluctuating irreversible thermodynamics. 

APPENDIX A. S Y M M E T R Y  RELATIONS 

Due to the reversibility in time of the microscopic motion, the matrix 
of correlation functions C(t )  is known to obey the relation 

C ( t ) =  < A ( t ) I A  + > = C + ( - t )  (A.la) 

o r  

C,.j(t) : C,*.,(- t) (A.Ib) 

where the asterisk denotes the complex conjugate. Moreover, 

Ci4(t)  = ei~jCi, j( - t) (A.2a) 

where ei = + 1 or ei = - 1 if the observable A ~ is even or odd with respect to 
time reversal, respectively. Let us introduce a matrix E, 

Ei ,  j = 8i (~ i,j (A.3a) 

with E obeying the properties 

E 2=1,  E I = E  A.3b) 

and obviously E =  1 if all of the A~ are even. 
In terms of E, we may write Eq. (A.2a) as 

C(t)  = E C (  - t) E (A.2b) 

and using (A.1) 

C + ( t )  = E C ( t )  E (A.4) 
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For C(0) = ( A I A  + ) =: F we find consequently 

F = E F E  = F + 

and 

as is well known. 
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(A.5a) 

F~,j=O if e ~ s j = - 1  (A.5b) 

Further relations are obtained by introducing the matrix ](t), i.e., con- 
sider Eq. (2.24) of I and write 

where obviously 

0,c(f) = -I(0 c(f)= - c (0  }(t) 

i(t) = c '(t) 1(t) c(t) 

so that by means of Eqs. (2.33) and (2.34) of I we find 

/ (+ ) :=  lim [( t)=A(+-)-~I(+-)A (+-) 

where 

d(-+)= lim e x p ( + I ( + ) t ) ] C ( t )  
t ~  + 0 9  

Now, using Eq. (A.2b) together with Eq. (3.7), we derive first 

and by means of Eq. (A.la) 

- -  I ( - ) = E 1  ( + ) E  

] (+)= _/(  )+ 

]( ) = _ I  (+)+ 

(A.6) 

(A.7) 

(A.8) 

(A.9a) 

(A.9b) 

(A.9c) 

(A.10) 

(A.11) 

and correspondingly 

Using (A.8), (A.9b), and (A.9c), we also find 

A(+)+ = A ( - ) =  EA(+IE 

and consequently for L,~ ( + ) = I ( -+ )A ( -+ / 

5~(+) = &f(-)+ =E~f(-)E 

822/46/I -2-27 
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For the Fourier transforms introduced in 
following, valid for all real co: 

d(-~o) = Ed(co) E 

Section 6, 

Dot 

we obtain the 

(A.12) 

corresponding to Eq. (A.2b). Using 
(6.11a), we also derive 

and 

(A.12) together with Eqs. (6.8a) and 

R ( -  I( _ co) = E R  ( + '(co) E (A.13a) 

so that, for instance, 

K ( - ) ( t )  = E K  I + )(t) + E 

K]5 '(t) = K]S )(t)* = K~,~/( _ t) 

A P P E N D I X  B. DERIVATION OF EQS. (4.12) A N D  (4.15) 

Let us consider the Fourier-Laplace transform of Eq. (4.2), 

~(z) = - I  ( + )A(z) + 2 ( + )(z) (B. 1 ) 

from which we obtain 

i 
Zt(z) = z + iI  ( + ~  [-A + 2 (+ l(z)], A = A(0) (B.2) 

(A.13c) 

(A.13d) 

and using Eq. (A.13b), 

Q ( ) ( - ~ o )  = -EQ(+)(~o) E (A.14a) 

which in time language read 

K ( ) ( - t ) = E K ( + l ( t )  E (A.13b) 

and 

Q ( -  )( - t) = - E Q  (+ t(t) E (A. 14b) 

Moreover, we find from Eqs. (6.4) and (6.10a) that the / s  is Hermitian 

R(co) = [R(~o)]  + (A.15a)  

for all o9 real. Consequently, we obtain 

K(t) = [K(  - t ) ]  + (A.15b) 
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Using Eq. (4.2) of l, we write 

dz dz A+ 

dz i (2 (+~(z ) lA+ ) (B.3) 
= F + Ma 2~r z + ii  (+) 

where Ecf. Eq. (1.11)] F = ( A I A + ) .  Using A ( + ) = F + F  ~+), we obtain 
from Eq. (B.3) 

F(+)= f o  dt [exp(I( + ~t) ] (  Z( + )(t)J A + ) (B.4) 

since (2~+l(z)lA +)  = Q(+)(z) has no singularities inside Ma because of 
Eq. (4.6c). 

The corresponding equation (4.15) is obtained by starting from 
Eq. (4.3) of I, i.e., 

& dz ~(z) = ~,~ dz (-4(:)1 A + 2Z ) = _ j , ~ , .  ~ 

= i f2f+~o ~ dt [exp( I (+l t ) ] (Z(+)( t ) ]A+ ) (B.5) 

where .,i = ,4(0). 

APPENDIX  C. DERIVATION OF THE F L U C T U A T I O N -  
D ISSIPATION T H E O R E M  

We employ the common argument that 

( A ( t ) I A ( t ) + ) = ( A I A + ) = k ,  Vt (C.1) 

As usual, we write the formal solution of Eq. (4.2) as 

A ( t ) = U ( t ) A ( 0 ) +  dt' g ( t - t ' ) Z ( + ) ( t  ') (C.2) 

where U(t )= exp(-g+) t ) .  Introducing Eq. (C.2) into (C.1) and dropping 
all terms that vanish for t ~ ~ ,  we find 

F =  dt~ dt2 U(t--  tl) K(tl  - t2) U + ( t -  t2) (C.3) 
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what is to be 
[cf. Eq. (4.4)] 

considered for large t, t>>tR, and 

K(tl - t2) = ( Z  < + ) ( t x ) l  z (-- ~+ ( t z ) )  

Consider F =  J1 + J2, where 

Jl = f~ dtl /~l dt2 U(t-  tl) K(tl - t2) U+ ( t -  t2) 

= f~ dt2 f[ dtl U(t-  tl) K( t l -  t2) U+( t - t2)  

= f~ ds f~ da U(s-a)  K(a) U+(a) 

= fods [ e x p ( - I  l+ )s)] V(s) e x p ( - I  ~+/+s) 

and 

Der 

we introduced 

(c.4) 

(c.5) 

V(s)= du [exp(I<+)u)] K(u) 

By similar manipulations we easily find J2 = J~ ,  as it must be since F is 
Hermitian. 

Now, we obtain 

fo o I<+)Jl+JxI<+~+= dsK(s)exp(-I~+>+s) (C.6) 

where we used partial integration, V(0)= 0, V(s)~ const for s--, o% and 
finally put t = oe. Collecting the above results, we finally obtain from (C.6), 
(C.4), and F =  J1 + J (  

/<+IF+ FI<+ >+ 

;o o = ds (Z<+)(s)lZ<+l+(O)) exp(-sI<+l+)  + h.c. 

i ~ = ds (Z(+)(O)]Z<+)+(s)) exp(sI<+>+) + h.c. (C.7) 

and hence Eq. (4.17). 
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A P P E N D I X  D. EXPRESSIONS FOR THE TAYLOR 
COEFFICIENTS OF R(tu) 

The given Laurent expansion of C allows us to relate in a 
straightforward way the coefficients K,,  n = 1,..., of the Taylor expansion 
(6.12), where Kn corresponds to the nth moment of K( t ) ,  to the 
macroscopic quantities. Using the properties of the Laurent expansion and 
the fact that the Laurent expansion of C and the Taylor expansion of /~ are 
both convergent inside the annulus, we find by comparing Eqs. (6.17a) and 
(6.27) by means of Eq. (6.24) 

1 
~0 = 2  K2 + 0(43) 

1 
-1 = K1 + ~ i ( K z I  t + )+ - I ( + !K2) + 0(4  3 ) 

c~ 2 = K o + i ( K I I ( + ) + - I ~ + ) K I ) + O ( ~  2) 

Using Eq. (6.25a), we resolve this as 

K1 = i(A - A + ) + O(42) (D.1) 

and 

K o = A I  + + IA  + + 0(42) (D.2) 
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